Functional interactions between the ciliopathy-associated Meckel syndrome 1 (MKS1) protein and two novel MKS1-related (MKSR) proteins.
نویسندگان
چکیده
Meckel syndrome (MKS) is a ciliopathy characterized by encephalocele, cystic renal disease, liver fibrosis and polydactyly. An identifying feature of MKS1, one of six MKS-associated proteins, is the presence of a B9 domain of unknown function. Using phylogenetic analyses, we show that this domain occurs exclusively within a family of three proteins distributed widely in ciliated organisms. Consistent with a ciliary role, all Caenorhabditis elegans B9-domain-containing proteins, MKS-1 and MKS-1-related proteins 1 and 2 (MKSR-1, MKSR-2), localize to transition zones/basal bodies of sensory cilia. Their subcellular localization is largely co-dependent, pointing to a functional relationship between the proteins. This localization is evolutionarily conserved, because the human orthologues also localize to basal bodies, as well as cilia. As reported for MKS1, disrupting human MKSR1 or MKSR2 causes ciliogenesis defects. By contrast, single, double and triple C. elegans mks/mksr mutants do not display overt defects in ciliary structure, intraflagellar transport or chemosensation. However, we find genetic interactions between all double mks/mksr mutant combinations, manifesting as an increased lifespan phenotype, which is due to abnormal insulin-IGF-I signaling. Our findings therefore demonstrate functional interactions between a novel family of proteins associated with basal bodies or cilia, providing new insights into the molecular etiology of a pleiotropic human disorder.
منابع مشابه
From Proteus to Prometheus: learning from fish to modulate regeneration.
and/or transition fiber regulation might be detrimental for ciliogenesis and correct positioning, resulting in the observed phenotype of the double mutants. Many key questions remain unanswered. Even though MKS1 and MKS3 physically interact, it is unclear how they act to regulate ciliogenesis, cilia length control, or cilia number. In mammals , MKS3 function regulates the number of cilia on the...
متن کاملThe Meckel syndrome- associated protein MKS1 functionally interacts with components of the BBSome and IFT complexes to mediate ciliary trafficking and hedgehog signaling
The importance of primary cilia in human health is underscored by the link between ciliary dysfunction and a group of primarily recessive genetic disorders with overlapping clinical features, now known as ciliopathies. Many of the proteins encoded by ciliopathy-associated genes are components of a handful of multi-protein complexes important for the transport of cargo to the basal body and/or i...
متن کاملIdentification of the Meckel Syndrome Gene (MKS1) Exposes a Novel Ciliopathy
Meckel syndrome (MKS, MIM 249000) is an autosomal recessive developmental disorder causing death in utero or shortly after birth. The hallmarks of the disease are cystic kidney dysplasia and fibrotic changes of the liver, occipital encephalocele with or without hydrocephalus and polydactyly. Other anomalies frequently seen in the patients are incomplete development of the male genitalia, club f...
متن کاملCiliary and centrosomal defects associated with mutation and depletion of the Meckel syndrome genes MKS1 and MKS3.
Meckel syndrome (MKS) is a lethal disorder characterized by renal cystic dysplasia, encephalocele, polydactyly and biliary dysgenesis. It is highly genetically heterogeneous with nine different genes implicated in this disorder. MKS is thought to be a ciliopathy because of the range of phenotypes and localization of some of the implicated proteins. However, limited data are available about the ...
متن کاملArabidopsis MKS1 Is Involved in Basal Immunity and Requires an Intact N-terminal Domain for Proper Function
BACKGROUND Innate immune signaling pathways in animals and plants are regulated by mitogen-activated protein kinase (MAPK) cascades. MAP kinase 4 (MPK4) functions downstream of innate immune receptors via a nuclear substrate MKS1 to regulate the activity of the WRKY33 transcription factor, which in turn controls the production of anti-microbial phytoalexins. METHODOLOGY/PRINCIPAL FINDINGS We ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 122 Pt 5 شماره
صفحات -
تاریخ انتشار 2009